

Pressure transmitter

piezoresistive, high overload protected Type series CD102 ./CD202 .

Application area

- · Chemical industry
- Shipping
- · Process engineering
- · Hydraulic control technology

Features

- Measuring ranges 0...2,5 bar up to 0...25 bar, relative and absolute pressure
- Piezoresistive sensor element
- Measuring system overload protected up to 250 bar
- Stainless steel housing as standard or field housing
- Output signal: 4...20 mA, 2-wire technology

Options

- High explosion protection for gases, IECEx
- As per UKCA regulations
- Overloaded protected up to 400 bar
- Output signal: 0...20 mA / 0...10 VDC / 2...10 VDC / 0...5 VDC

Application

The device converts measured pressure values into the current or voltage unit signals that are typically used in process control technology. The transducer's sensor is a piezoresistive semiconductor bridge circuit. The integrated overload switch is designed for continuous overpressure and has no wear parts.

A compensation network ensures that the output signal is largely unaffected by the process temperature.

Technical Data

Housing designs

Standard housing with right angle plug material: st. steel mat.-no. 1.4301 (304)

degree of protection: IP 65 silicon cover plate for trimming potentiometers. Right angle plug as per DIN EN 175301-803-A

(DIN 43650, form A) with cable gland M16x1.5 mm, cable diameter 4...10 mm.

Inner chamber aeration for measuring ranges ≤ 10 bar.

Field housing, solid design

material: st. steel mat.-no. 1.4301 (304) degrees of protection:

· standard

IP 67, inner chamber aeration via connection cable for excess pressure measuring range \leq 10 bar.

Option:

IP 65, inner chamber aeration via integrated sintered filter, only for excess pressure measuring ranges ≤ 10 bar, if aeration via cable is impossible.

Screwable cover ring with O-ring seal for the externally accessible trimming poten-tiometers

Screwable case cap for connection chamber. Connection terminals 4 mm².

Cable gland M16x1.5 for cable diameter 4.5...10 mm, material polyamide.

Process connection

G 1/2 B, DIN EN 837-1

Measuring system

piezoresistive measuring bridge, protected by integrated stainless-steel diaphragm.

Filling material

Silicone oil

Material

diaphragm: st. steel mat.-no. 1.4404 (316L) socket: st. steel mat.-no. 1.4404 (316L)

Weights

standard housing: approx. 400 g field housing: approx. 800 g

Storage temperature range

-25...+80 °C

Process temperature range

-10...+50 °C

Compensated temperature range

-10...+50 °C

Temperature influence

on zero point and meas. span: ≤ 0.3 %/10K

Auxiliary power supply

standard version:

24 V DC · nominal voltage

· function range

2-wire technology 14...30 V DC 3-wire technology 16...30 V DC

· max.permiss.operating voltage 30 V DC

Ex design:

permiss. voltage range of 2-wire circuitry 15...30 V DC

Ex design:

permiss. voltage range of 3-wire circuitry 16...30 V DC

Standard measuring ranges

see order details

Overload influence

 \leq 0.1 % f.s.

Output signal

4...20 mA, 2-wire technology, standard. Further possibilities see order details

Test output (with field housing only)

non interruptible output current measurement via integrated LOC diode

Current limitation in output signal

max. output current approx. 30 mA

Linearity error incl. hysteresis

≤ 0.3 % f.s. (limit point calibration)

Adjustable range

zero point and measuring span approx. \pm 10 %

Response time

 \leq 20 ms

Ex-approval

The limit values detailed in the EC-Type Examination Certificate are to be observed!

EC-Type Examination Certificate TÜV 02 ATEX 1971 X and IECEx TUN 04.0008X type of ex-protection:

> II 1/2G Ex ia IIC T4/T5/T6 Ga/Gb II 2G Ex ia IIC T4/T5/T6 Gb

IECEx TUN 04.0008X type of ex-protection: Ex ia IIC T4/T5/T6 Ga/Gb Ex ia IIC T4/T5/T6 Gb Ex ia I Ma

Since the intrinsically safe circuits are connected with the earth potential for safety reasons, potential equalization has to exist in the complete course of the erection of the intrinsically safe circuits.

Ambient temperatures

(a) II 1/2G Ex ia IIC T4/T5/T6 Ga/Gb Ex ia IIC T4/T5/T6 Ga/Gb

Ta [°C]	TM [°C]	temperature class
70	40	Т6
70	60	T5
70	60	T4

Ambient temperatures

⟨ Il 2G Ex ia IIC T4/T5/T6 Gb Ex ia IIC T4/T5/T6 Gb

Ta [°C]	TM [°C]	temperature class
70	55	T6
70	70	T5
70	70	T4

Ambient temperatures Ex ia I Ma: Ta = Tm 70°C max

Electrical data

Sum of maximum values in the intrinsically safe circuits

Ui = 30 V Ii = 100 mAPi = 0.7 W

The table shows the values for different pressure transmitter signals:

signal mode	Ci [nF]	Li [µH]
2-wire 420 mA	33	20
3-wire 0(2)10 V	43	30
3-wire (0)420 mA	43	30

Burden

 $\frac{\text{2-wire circuitry}}{\text{standard version}} \quad R_a = \frac{U_B - 14 \text{ V}}{20 \text{ mA}} \quad \text{(KOhm)}$ $\text{with explosion} \quad R_a = \frac{U_B - 15 \text{ V}}{20 \text{ mA}} \quad \text{(KOhm)}$ protection

3-wire circuitry all models with voltage output $I_a = \le 20 \text{ mA}$

ia = 20

 voltage output a current of 20 mA can be obtained in the case of devices with power output.

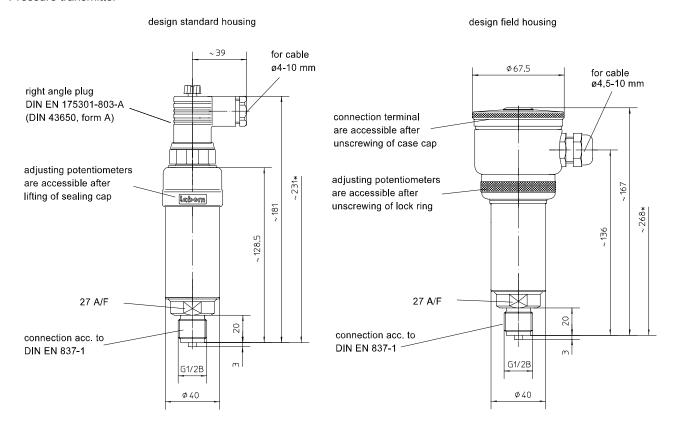
 ${f U}_{\rm B}$ = operating voltage ${f R}_{\rm A}$ = max. permissible burden resistance (incl. lead)

Burden influence

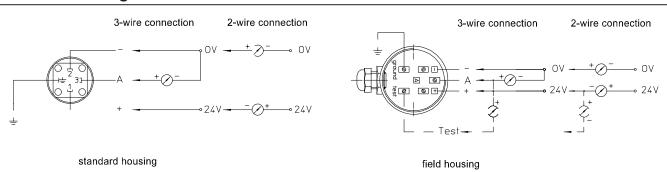
for 500 Ohm burden of change: \leq 0.1 % f.s.

Caution:

Make sure that there is equipotential bonding along the entire wiring run both inside and outside the explosion hazardous area.


Switch off device if it is installed in zone 0 and in temperature class T5 and T6 and it fails!

EMC Test as per IEC 801


Information on other models see order details or upon request.

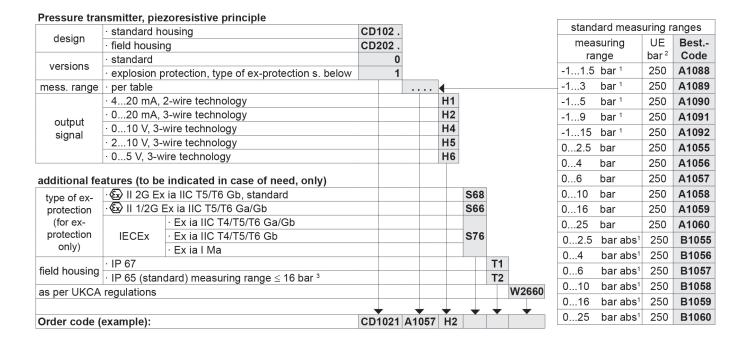
Dimensions

Pressure transmitter

Connection diagram

Mounting and operating instructions

The devices are normally for vertical mounting. Should the devices repuire re-adjustment you may access the internal potentiometers for zero point and span underneath the cover in standard housings, and by removing the knurled locking ring in fiel housing.


The inner pressure for measuring ranges up to 10 bar is compensated via the connection cable or an integrated sintered filter. For higher measuring ranges or all measuring ranges of absolute pressure a pressure compensation is not necessary. The specified protection types are only achieved, when the cable diameters correspond with the specified nominal size of the sealing inserts, and the screwings have been screwed tight. Hand-screw the centrally mounted fixing screws on versions with right angle plugs. You may only mount devices with protection type IP 65 vertically (upper connection) or horizontally.

Electrical equipment in hazardous areas should only be installed and commissioned by competend personnel.

Modifications to devices and connections destroy the ex-proofing and the guarantee. The complete cable run, both inside and outside the hazardous areas in intrinsically safe circuits, should be equipotentially bonded. The limit values are to be observed. The certified EMC measures will only be effective if the earthing connection is correctly made.

Note: You may order suitable connection cables with integrated aerating channels from us.

Order details

¹ not below 100 mbar abs. / -900 mbar rel. continuous operation

For information on definitions of terms regarding the Pressure Equipment Directive, see Technical Instruction TA_068.

² upon request up to 400 bar

³ not valid for absolute pressure